v

CAMBRIDGE P.XEL SPx Application Note

How to use the SPx library to generate track data as UDP messages on the network.

Summary

It is sometimes necessary or desirable to generate track messages without using SPx
Server or SPx Radar Simulator.

For example, to translate existing track information into a format compatible with
standard SPx applications, such as SPx Radar Simulator or SPx Fusion Server.

This application note explains how such data may be generated and send onto the
network, using standard SPx modules.

Generating track messages in a format that SPx applications can then receive and
process or display may be useful in situations where track data exists in another format
and needs to be translated into a format that SPx can accept.

Using standard modules available within the SPx library it is straightforward to generate
and send valid SPx track messages onto the network. The steps involved are as follows:

1. Create an SPx packet sender object to handle packetisation and distribution of
track messages.

2. Populate a suitable SPx track structure with appropriate data values, each time a
new track message is created or an existing track is updated.

Form a track message from the SPx track structure created/updated above.

Pass the track message into the packet sender for dispatch onto the network.

The SPx library provides a static function, sPxRemoteServer: : TrackPackNet (), which
may be used to pack the SPx track structure into a message buffer, suitable for sending
by the packet sender. This function handles byte-swapping, if appropriate, to form the
data into network (big-endian) order.

The packet sender object handles all aspects of forming the message data into a packet
and sending that packet onto the network. A single packet sender object should be
created to provide a stream of track data and persist for the duration of the program.
This object is simply created by the following line of code:

SPxPacketSender* TrackSender = new SPxPacketSender () ;

CP-16-110-116 Version 1.4 Page 1



CAMBRlDGE P.XEL SPx Application Note

The address that track messages are then output to is simply set using the
SPxPacketSender: :SetAddress () function.

For example, the following line of code will configure the packet sender object to output
messages to multicast address 239.192.50.79 and port number 5079:

TrackSender->SetAddress (“239.192.50.79”, 5079);

An SPx track structure should be filled each time a new track message is to be sent via
the packet sender. The SPx track format supports varying levels of information within a
track message, with options for "minimal”, “normal” and “extended” messages, each
containing successively more information. It is generally desirable to keep the packet as
small as possible, while still conveying all of the relevant/required information. In many
cases the SPx “minimal” track report will contain sufficient information, providing a
unique track ID, position and velocity.

The SPx “"minimal” track message format is built from an spPxPacketTrackMinimal C
structure, defined in the "SPxPackets.h” header file as follows:

renor * /
epo

SPxPacketTrackMinimal tag {

*

')

UINT32 id; |,
UINT8 senderID; /*
UINT8 status; /*
UINT8 numCoasts;
UINT8 id ttm; /* TT
REAL32 rangeMetres;
REAL32 azimuthDegrees;
REAL32 speedMps; /* St
REAL32 courseDegrees;
REAL32 sizeMetres; /
REAL32 sizeDegrees;
UINT32 weight,; /* I
UINT32 strength; /
UINTS flags; /* Tar
UINT8 validity; )
UINT8 uniTrackType; /*
UINT8 sourceIndex; /
UINT32 reserved3; /
UINT32 reserved4; /
UINT32 reserved5; /* Resert
} SPxPacketTrackMinimal,;

J/* Mo

As a minimum, the ID, range, azimuth, speed and course fields should be correctly filled
with appropriate values, for each update of a given track. The status field should also
normally be set to a value of SPX PACKET TRACK STATUS ESTABLISHED to indicate that
the track is in the confirmed state. For example:

CP-16-110-116 Version 1.4 Page 2



v

CAMBRDGE P.XEL SPx Application Note

SPxPacketTrackMinimal track {0}; /* ate a new, empty structure *
track.id = 1234; /* set app 2 t /

track.rangeMetres = 5000;
track.azimuthDegrees = 180;
track.speedMps = 30; /* set
track.courseDegrees = 90; /* s¢ urren ourse, 1in
track.status = SPX PACKET TRACK STATUS ESTABLISHED; ,

The ID field uniquely determines the physical target. In order to update an existing
track, successive messages should simply be generated and sent that have the same
value of ID.

With an appropriate SPx track data structure filled, the next step is to pack this into a
message that can then be sent as the payload of a UDP packet. The SPxRemoteServer
class provides the static TrackPackNet () function, which may be used for this purpose.
This function takes in a pointer to a minimal (plus normal and extended) structure and
packs the data into a message buffer.

The code below demonstrates the use of the TrackpackNet () function to pack a minimal
track structure:

t bufsz = sizeof (SPxPacketTrackMinimal) ;
ar* buf = new unsigned char[bufsz];

X%k % % % ¥

unsigned int msgBytes = SPxRemoteServer::TrackPackNet (&track,NULL,NULL,buf,bufsz) ;

Now that the structure has been put into a suitable buffer, the packet sender object can
be employed to dispatch the data onto the network. The SPx packet sender object
provides a convenient function for this purpose, called sendpacketB (). This function
handles the addition of an SPx packet header (which includes a timestamp) to the front
of the track data payload.

The code below demonstrates how to mark the current time and dispatch a track
message, where buf is a suitable message buffer created by the TrackPackNet ()
function.

CP-16-110-116 Version 1.4 Page 3



CAMBRDGE PIXEL SPx Application Note

SPxTime t now;
SPxTimeGetEpoch (&now) ; /* Mark the current time */
sender.SendPacketB (SPX PACKET TYPEB TRACK MIN, now, buf, msgBytes);

Normal and Extended Track Reports

When information beyond that supported by the minimal track report needs to be
supplied, a normal or extended track report may be used instead. For example, a normal
track report can include track classification, and an extended track report can include
many other data items including track position in latitude and longitude, secondary
information from AIS, ADS-B or IFF source and so on. Track reports are nested, such
that an extended report contains a normal report and a normal report in turn contains a
minimal report. The above examples can be extended in this way. Note that a full
definition of the contents of the normal and extended track reports is found in the file
SPxPackets.h.

SPxPacketTrackExtended ext = {0}; /* create a new, en
SPxPacketTrackNormal* norm = &ext.norm;
SPxPacketTrackMinimal* min = &ext.norm.min;

min->id = 1234; /* set
min->rangeMetres = 5000; /
min->azimuthDegrees = 180; /*
min->speedMps = 30; /* set c
min->courseDegrees = 90; /* cu nt cot
min->status = SPX PACKET TRACK STATUS ESTABLISHED

norm->class = 0; /* set target classification */
norm->trackClassType = SPX PACKET TRACK CLASS TYPE CUSTOM;

ext.mask |= SPX PACKET TRACK EXT LATLONG;
ext.latDegs = 52.0; /* set target position */
ext.longDegs = 1.3;

const 1int bufsz = sizeof (SPxPacketTrackExtended) ;

unsigned char* buf = new unsigned char/[bufsz];

unsigned int msgBytes = SPxRemoteServer::TrackPackNet (NULL,NULL, &ext,buf,bufsz) ;
SPxTime t now;

SPXTlmeGetEpoch(&now), /* Mark the current time */

sender.SendPacketB (SPX PACKET TYPEB TRACK { EXT, now, buf, msgBytes);

Other Formats

It is straightforward to generate ASTERIX CAT-48 tracks instead of SPx format tracks.
The SPx library provides an ASTERIX encoder class that may be used to convert an SPx
track data structure into an ASTERIX message buffer, which may be sent onto the
network via an SPx packet sender object, as before.

object, to convert SPx track structure

SPxAsterixEncoder *AsterixEncoder = new SPxAsterixEncoder () ;

CP-16-110-116 Version 1.4 Page 4



CAMBRIDGE PIXEL

SPx Application Note

In the following code sample the spPxPacketTrackMinimal structure is converted into an
ASTERIX message buffer, using the Buildcat48 () function. Note that the timestamp
information is included in this step, rather than at the message sending stage.

/* Build Asterix track message from SPx track structure */
unsigned int msgBytes = AsterixEncoder->BuildCat48 (buf, bufsz,
OxFFFFFFFF, &now, &track, NULL, NULL) ;

Then the spxPacketSender: :SendrRawBuffer () function is simply used, instead of the
SPxPacketSender: :SendPacketB () function, to send the message data onto the
network:

/* Send ASTERIX track onto network */
TrackSender->SendRawBuffer (trackBuf, msgBytes);

< End of document >

CP-16-110-116 Version 1.4 Page 5



	How to use the SPx library to generate track data as UDP messages on the network.
	Overview
	Filling a Structure
	Forming a Message
	Sending Messages
	Normal and Extended Track Reports
	Other Formats

